5,045 research outputs found

    Association between genotypic diversity and biofilm production in group B Streptococcus

    Get PDF
    Background: Group B Streptococcus (GBS) is a leading cause of sepsis and meningitis and an important factor in premature and stillbirths. Biofilm production has been suggested to be important for GBS pathogenesis alongside many other elements, including phylogenetic lineage and virulence factors, such as pili and capsule type. A complete understanding of the confluence of these components, however, is lacking. To identify associations between biofilm phenotype, pilus profile and lineage, 293 strains from asymptomatic carriers, invasive disease cases, and bovine mastitis cases, were assessed for biofilm production using an in vitro assay. Results: Multilocus sequence type (ST) profile, pilus island profile, and isolate source were associated with biofilm production. Strains from invasive disease cases and/or belonging to the ST-17 and ST-19 lineages were significantly more likely to form weak biofilms, whereas strains producing strong biofilms were recovered more frequently from individuals with asymptomatic colonization. Conclusions: These data suggest that biofilm production is a lineage-specific trait in GBS and may promote colonization of strains representing lineages other than STs 17 and 19. The findings herein also demonstrate that biofilms must be considered in the treatment of pregnant women, particularly for women with heavy GBS colonization

    Rearranging Detection of Gene Rearrangements

    Get PDF

    Cooling of cryogenic electron bilayers via the Coulomb interaction

    Full text link
    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby, cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure, and analyze the power transfer. We show that across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure

    Addiction in Extreme Sports: An Exploration of Withdrawal States in Rock Climbers

    Get PDF
    Background and aims Extreme sports athletes are often labeled “adrenaline junkies” by the media, implying they are addicted to their sport. Research suggests during abstinence these athletes may experience withdrawal states characteristic of individuals with an addiction (Celsi, Rose, & Leigh, 1993; Franken, Zijlstra, & Muris, 2006; Willig, 2008). Despite this notion, no research has directly explored withdrawal experiences of extreme sports athletes. Methods Using semi-structured interviews, we explored withdrawal experiences of high (n = 4) and average-ability (n = 4) male rock climbers during periods of abstinence. We investigated the psychological and behavioral aspects of withdrawal, including craving, anhedonia, and negative affect; and differences in the frequency and intensity of these states between groups. Results Deductive content analysis indicated support for each of the three categories of anhedonia, craving, and negative affect. Consistent with existing substance addiction literature, high-ability climbers recalled more frequent and intense craving states and negative affect during abstinence compared with average-ability climbers. No differences in anhedonic symptoms between high and average-ability participants were found. Conclusions Rock climbing athletes appear to experience withdrawal symptoms when abstinent from their sport comparable to individuals with substance and behavioral addictions. The implications of these findings and suggestions for future research are discussed

    Structure of Supergiant Shells in the Large Magellanic Cloud

    Full text link
    Nine supergiant shells (SGSs) have been identified in the Large Magellanic Cloud (LMC) based on H-alpha images, and twenty-three SGSs have been reported based on HI 21-cm line observations, but these sets do not always identify the same structures. We have examined the physical structure of the optically identified SGSs using HI channel maps and P-V diagrams to analyze the gas kinematics. There is good evidence for seven of the nine optically identified SGSs to be true shells. Of these seven H-alpha SGSs, four are the ionized inner walls of HI SGSs, while three are an ionized portion of a larger and more complex HI structure. All of the H-alpha SGSs are identified as such because they have OB associations along the periphery or in the center, with younger OB associations more often found along the periphery. After roughly 12 Myrs, if no new OB associations have been formed a SGS will cease to be identifiable at visible wavelengths. Thus, the presence and location of ionizing sources is the main distinction between shells seen only in HI and those also seen in H-alpha. Based on our analysis, H-alpha observations alone cannot unambiguously identify SGSs, especially in distant galaxies.Comment: 26 pages, 16 figures, accepted for publication in the Astrophysical Journal Supplemen
    corecore